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The present work is devoted to the derivation of the differential
equations of motion of a viscous gas, It is assumed here that the gas,
to a sufficient degree of accuracy, may be considered an ideal gas; that
is, strongly compressed motions of gas are excluded from the reasoning
and the ratio of the mean free path of a molecule to a characteristic
dimension is small in comparison to unity, that is, motions of
extremely rarified gases are excluded,

It is assumed, moreover, that to a sufficlently accurate degree the
gas motion to be considered satisfies the law of uniform distribution of
internal energy with respect to the degree of freedom of molecule motion,
that is, excluded from consideration are cases of gas motion with extremely
rapid variation of hyﬂ;odynamic elements in space and time,

The regularity oé the macroscopic motion of a real gas is connected
to the randomness of the microscopic motion since the macroscopic motion
results from the microscopic motion of an enormous number of molecules,
From the truth (authenticity) of these test data it follows that a finite
nurber of random microscopic motions is so large that the macroscopic
motion can be formulated by means of the same statistical laws which we
would have in the case that the number of microscopic motions were

infinitely large,
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Thus Instead of a real discrete gas with a finite number of finite
molecules, this permits the consideration of a gas "limited" in the form
of a continuous continuum of infinitely small molecules.

Such an arrangement is the approximate scheme, with which the regu=-
larity of the macroscopic gas motion is conserved, the possibility is
overlooked of studying the viscous nature of small fluctuations connected
with the finite number of molecules of a real gas.

By replacing the study of a gas by the study of the motion of a
material continuum, it is possible to introduce the concepts of density,
velocity, complete internal energy of a unit mass of gas. Let us note
that by the introduction into the reasoning of a gaseous continuum and the
definition of basic hydrodynamic elements, we nowhere create impediments
to the consideration of the microscopic motions of molecules and we even,
conversely, assume their existence, The introduced gaseous continuum may
be allotted all the physical properties of a real gas not related to a
finite number of its molecules, In particular it may be required that
the mean free path of the particle of the gaseous_continuum be, as in a
real gas, a finite although always small quantity,

The reproduced below derivation of the equations of motion of a
viscous gas shows that the usually applied [1,2,3,#] equations are
obtained from insufficiently complete physical representations.
Consequently a series of terms of the same order of smallness,absent
in them,are kept,

1. Fundamental Concepts

Let us denote by m the mass of gas in some volume, Then the

density p of the gas at a given point M at a given time ¢ will be
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called the limit of the ratio of the mass m at time t to the
volume P, if the latter which envelops the point M is contracted
to this point,

Since the momentum of a system equals the momentum of the center of
inertia of a system in which all the mass of the system is concentrated,
then the introduced velocity .i of the gas motion is the velocity of the
center of inertia of an infinitely small volume,

Let us introduce the concept of total energy u and interior
energy E of a unit mass of gas.

Let us consider again some volume P enclosing the point M. Inside
the volume P will be found some mass of gas possessing some finite
energy, because by representing the gas 1deally, then all the energy of
these molecules will be kinetic. Let us denote it by U;. Then the
condition to express the total energy U of a unit mass of gas at a
given point in a given moment of time t is the limit of the ratio of
U, at t to amass of gas m at time t if the volume P enclosing
M shrinks to this point.

On the basis of Koenig's theorem the quantity U, may be divided
into two components: the kinetic energy Uz of the center of inertia
and the kinetic energy U, of the relative motion with respect to the
center of inertia,

The internal energy E of unit mass of gas at a given point M
at time t we will express by the limit of the ratio of the kinetic
energy Ug (at time t) of the relative motion of molecules with respect
to the center of inertia to the mass of gas m (at time t) if P enclosing

M, shrinks to the point.
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If the mass, momentum, total and internal energy of the gas included
>
in the element of volume dP be denoted by dm, dK, 4U* and 4E*, then

from the definitions introduced it follow immediately

dm = pdP
> >
dK = pvdP
- (1.1)
av* = (:C,l- pv +pE)dF

pEdP

The quantity E of internal energy of a unit mass of gas which is
Introduced above may evidently be divided into two components.

The first of these E, will correspond to shat part of the kinetic
energy of the molecular motion which is related to its successive motions,

The second of these Ep will correspond to that part of the kinetic
energy of the molecular motion which is a result of its rotatory and
oscillatory motion,

The quantity, proportioned to Ei, in the kinetic theory of gases
is the temperature, The proportionality factor evidently depends on the
units in which temperature is measured and becomes completely determined
if such a unit is chosen. Usually temperature is measured in degrees
Kelvin and is denoted by T,

For these units of measurement defining temperasture we have

mo Ey = 3/2 kT, k = 1,37 x 10~'° erg/deg. (1.2)
where k is the soecalled Boltzmann constant and my 1is the mass of a
gas molecule.
Since the law of uniform distribution of energy by free degrees

occurs for the cconsidered gas motion, then the part E, of E 1s
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proportional to T,

Therefore
E=¢¢T (103)

where ¢y 1is a new proportionality coefficient called the specific heat

for constant volume,
Transfer Occurrences and Some Conclusions

Let us give an elementary treatment of some physical occurrences
belonging to the so=called transfer occurrences.

l. Density of self-diffusion: Iet us consider some fixed areca
ABCD of the area AS with normal—i in a macroscopic gas. Let us
denote by A the molecular mean free path and by ¢ the mean value of
the velocity of the thermal molecular motion and assume that the gas
temperature is constant.

Let us simplify the representation of the molecular motion and
consider that half the molecules has a velocity in the normal direction
_g and half in the opposite direction.

Moreover, let us consider that all the molecules trawerse the path
A without collision in the time

At = (2'.1)

ol

Then half the mass of the gas layer of thickness A above, ths ares AS
go down and half the mass of the gas layer of thickness A, below AS, go
above.

If M\ 1is small in comparison with the characteristlc dimension

of the occurrence 1, then, with sufficient accuracy, we may write

dp A / dp A N
= ASM (/p'+ -, My =ASAN P -y~
ane w2 ' ow2 / (2.2)
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where Am, is the mass of a gas layer of thickness X\ situated above
the area AS, Amy 15 the mass of a gas layer of thickness A lying
below the area AS, p 1is the gas density at some point of the area,
Bp/ég is the derivative in the 'g’ direction of the density p at some
point of AS.

Evidently, then
om =L (am,- am) = L ASNER (2.3)
2 2 an
yields the mass of the gas transported as a consequence of the inconstancy
of the destiny across the element of area AS in time At.
s
Let us denote by Anp the mass flow across the area with normal n-
..)
in the direction opposite to 8 connected with the inconstancy of the
density.

Then

Am

- 3 |
an = m = Ac <L (2,’-!.)

>

Su

e F

Because of the simplicity of the representation of the motion of
the gas molecule, it is impossible to guarantee the correctness of the

numerical factor in (2.4). Consequently, put
np = fire 32 (2.5)
P n

where £, is the nondimensional numerical factor of the order of unity.
From (2.5) we see that with the variation of density in the macro-

scopic quiescent gas occurs the flow of mass across an area immobile

with respect to the gas. This phenomenon of mass flow because of the

variation of density it is expedient to call the density of self-diffusion.
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Evidently this reasoning is preserved in the case when the macro;
scopic motion of gas and area are considered moving in space with
velocity-z of the macroscopic gas motion, The self-diffusion of the
density the mass flow Qn, in this case will also be given by (2.5)

Let us observe that the density of self~diffusion 1s never taken
into account in describing the motion of a viscous gas.

2. Density of Heat Conduction: Let us consider, as above, certain
fixed elements of area AS with normal jﬁ in the macroscopic quiet gas,
let us retain the previous notation and let us consider the gquestion of
the transport of the internal energy across the area DS assuming the
gas temperature constant.

Downward will be transported mass l/zﬁmg with internal energy AE5,
upward will te transported the mass 1/24m; with internal energy AE,.
Evidently

AEo= %—Ame cy T, &= %'-a’m ¢y T (2.6)

The quantity

AE = AEs= ABy (2.7)

gives the amount of internal energy transported because of the inconstancy
of the density across the area A4S during time A4t.
Let us denote by tnp the flow of the internal energy across an
opposite to

>
area with normal N in a direction/ D connected with the inconstancy

of the density. We have

- OE _ .m0
tnp = m = f1 XCCV T Sﬁ (208)

if the correctness of the numerical factor is not certified.
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then put

ty, = £z Kooyl % (2.9)

where f, 1is a numerical factor of the order of unity.

It is evident that the reasoning fails in the case when the macro-
scopic motion of the gas and the area AS are considerea moving with
the velocity v; of the macroscopic gas motion. Formula (2.9) will
viela in this case the flow of internal energy related to the variability
of the density.

The phenomenon of energy transport across an area moving along with
the gas which arises from the variability of the density, is called the
density of heat conduction.

Let us note that the phencmenon of the density of heat conauction
is never taken into account in the derivation of the equations of motion
of & viscous  as.

5. Viscosity: Using the same simplification of the scheme of mole-
cular motion, it is not difficult to consicer the guestion of momentum
transfer across an area moving with the gas for those cases of motion when
the macroscopic velocity of the gas motion varies in space.

The coefficients of viscosity npy; ana u, which gppear here, con.sist
of the products of the velocity components with respect to the coordinates
in expressions for momentum flow and are obtained from the formulas

Hy = f3 PN u= L, pAc (2.10)
where fg and f, are numerical fectors of the order of unity.
Note., The transport phenomenoﬁ is not exhausted by the three considered

phenomena if only because the average of the considered phenomena is not
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the usual temperature of heat conduction.

Nevertheless it is possible to make three essential conclusions from
consideration of these three phenomena.

First: the usual reasoning may not be used for the components of
the equations of motion of a viscous gas with & fluid volume of constant
mass because it may vary at the expense 6f the self-diffusion of the mass
flows of a mass volume boundea by a closed surface moving with the gas.

Second: it is impossible to be limited only to the consideration of
viscosity and the ususl temperature of heat conduction for the components
of the eguations of motion of a viscous gas because there exist other
transport phenomena,

Third: it should be kept in minu for the components of the equations
of motion of a viscous gas that mass, momentum and energy are transported
across a surface moving with the gas for which the hydrodjnamic elements
very in space.,

3, Generel Description oi the Laws of Veriation

Let us consiaer the average of some fixed volume V bounded by
a surfuce & idmvang with a velocity v in space anu let us assume that
some scalsr or vector uantity A , & function of the coordinates anu time,
is aefined at points of the moving meuium whicn fills the space.

Let us also consider together with 4 the yuantity ¢ defined by
the formula ~

o= ﬁ A av (3.1)
v

where aV 1is an element of the volume V .

For & fixed volume V , the guantity @ will be a function only
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of time t and evidently
i h!
38 = /ff .y (5.2)
dt v t

=N
Let us admit that the variation of ¢ with time results only from

consiceration of the independent action of the fallowing two factors:

1) Insiage the volume V the yuantity & with volume velocity B re-
sults at the expense of the effect of this factor in the volume dV in
time di so that @ vuncergoes a variation determined by the formule

£,9= B dv dt (3.3)

2) The flow of ® &across tne surface o of the volume V with sur-
face density Gn occurs since because of the effect of this factor on
the surface element G5 with external normel n in time dt the Juan-
tity @ undergoes & variation 8%  defined by the formala

82%= G, 4o dt (2.4)
Since both factors act independently of each other, then by integ-
rating A, over V and A0 over &, combining the results of the
inteyrations and aividing by ut , we obtain the second expression for

d%/dt, yiven by the formuls
o0a r
ad = J/ B ap +f/ Gyas (5.5)
dat
' S
kyuating (3.£) and (5.5), we arrive at tioe ejuation

J; * :fV/fB " Sﬂ(}“ds (2.6)

Let us carry out all the consiuerations in the arbitrary, orthogonal
curvilinear coorainetes ) , 4 s 4y which are related to Cartesisn co-

orainates by depencencies not containing time and let us choose from the
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volume V bounded by the surfaces
=&, 4 T4 5 9 =b, 4g=dp; dz=C, dz =dy (3.7)
If the Lame coefficients be denoted by Hy, Hy, and Hz then (3.6)

is written for the chosen volume in the following way:
20,9293 919,94

ff/a Ailﬂzﬁ:z)cfbaqzaqs fJ BﬂlHrﬂnaqldLI2qq5
§ ot

2aa 2

ff Gl(q]_,QZ’q,g’t)Hg(QI,Q2,Q‘5)H5(Ql:‘l2:‘-l5) +
be

G_l(a,ag,qz,,t)Hg(a,qz,qs)ﬂg(a,qz,qz)}iquqg +
Qqu

f/ Gg(&_(_’q'g,q;u t)hs(quq2;q5)Hl(q]_:Qg,Lig) +
C

, _ I
G-Z(q]_’ b, q5, t)B?)(ql’b’q?)) Hl(ql’b’q.?))_j qudql +

1494
ff [Gg(iil)qz;‘-ig’t)ﬁl l;Qg:\lz)Hg( l’Q2,q.'5) +
a’'c .
- , L
Gwskquq2,0,t)H]_\ql,Qgsc)ﬂg(ql ,q2,0)_J dq;das (3.8)

where Gys Go» G denote the surface density of the stream across the
bounuzries of a curvilinear parallelopiped with normals parallel to
bue w3, g, dx axes ana G—laG_z’ G_z denote the same quantities for
the oppositely directed normal.

Differentiating both sides of (3.8) with respect to 915 49p» dg

ensily yields

=8+ 1 F(Glﬁzﬁs) ¢ ACGpHH) | AGgiyHy) (3.9)
t HyHH, ™ | dy; g, aqsm J

e

Let us separate into two each of the guantities Gl’ 02, G5
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putting
Gy = -vja+C 3 Gy, = -vA+ G5 Gy = -vzh t Uy (3.10)

where Vys Vg, Vv, are the projections of the velocity vector v of
the medium on the Qs 4ps 45 axes.

The sense of the components in formula (3.10) are completely clear.
If the moving medaium be aisplaced only as the ordinary (not gasiform)
aeformable mecium ana if the flow of the quantity @ is related only to
the mecroscopic motion of tne substance across the surface S , then we
will only have the first components in formula (3.10). In reality, be-
cause of the molecular structure of the real medium, the flow across the
surface may be relsted not only to the macroscopic motion, but to the |
molecular motions inside the smbstante moving with velocity w; . Consequently
correchions, which are denoted by Cys Coy Cx to the first components are
necessary. These corrections are only the flows across surfaces moving
with the velocity of the medium.

Putting (%.10) in (3.9) we obtsin

oA + __l____‘_ O (AV{HgH:) + 3 \av HgHy) + _9 (Avénlﬂ«)]:

St HyHHy [Sag g
d iy
B+ _ 1 [d (ul M+ 2L “o“l) + _9 (G, L) (3.11)
HLH;—:H;-)Lah Oy Oug 4

Jr
BA + _l dA + _é BA + _Q BA +
at Hy aqk Ho 8q¢ Hy aqo

5] (VlHEH:‘J) + gé—("zﬂsﬂl) + __a__(vsﬂlﬂz)
4o aQ3 J

3 2751 3L
4y A4, A4,

B+ _1 [—a—“‘l“zns) + O (Ut ) + (L H AT (5.12)

H1H2H5
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If we take advantage of the well-known formulas

@.=§+EQA_+Z§'§_A_+"_’6Q_

3 ( 1) + 3 (o) + D yp
divv=_1 v Hollz) + voHH,) + v H H
17273 2 371 172
B HoHl Laql Ay X; O ]
then equation (3.12) can be written in the following forml:
da + A Giv v =B+ D (C HH,) + _O (C.HH ) + _d (C.H H)
Gt Hlﬁzﬂs[aql VRS e BT 3, R

This eyuation represents the desired record, in difrerential form, of
the general law of variation of A with the assumptions macde before on
the factors defining the variation of @ which is relatea to 4 by (3.1).

4. Eyuvations of Motion of a Medium

The eyuations of motion of a medium taking acount of mags flow,
momentum, and energy are derived very simply with the aid of (3.14), if
the laws of conservetion of mass, momentum and energy are interpretea
by the laws of variation as expressed by (3.14).

To obtzin the continuity eguation, it is necessary to take the mass
conservation law &anq, assuming the absence of a three dimesnsional distri-
bution of sources, to put

®=4, A=p , B=0, C =@ , Ca=G » C3=0Qs (4.1)
1. bhkguation (%.14) may be obtained by considering a moving volume V
boungeu by & surface S the points of which are moving with the macro-
scopic velocity v ot the motion of the medium.

In this case there is obtained instead of (5.6)

/ﬂg%+dlvAv‘dV—ﬂBdV+ﬁ C 48 (5.6&5
N\

where Ln i3 the flow of @ 4Cross an area moving with the gas and hav-
ing @ normal n . The sense of the yuantities Cy» Cos 05 is disclosed

simul tuneously from (3.8a), (3.14) and by inspection.
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where M 1is the mass, p 1is the density, Qs Wos Q5 are the mass
flows as a conSet;uence of self-diffusion across sn aree perpendicular
to tne coordinate axes.

Then this eguation is obtained

dp+pdivv=_1 P(Ql%%) + D (QHgH) + 3 (QgHHy) 7 (4.2)
dat }111-12115 aql aq2 qu g
To obt.in correctly the equations of motion, it is necessary to

taxe the momentum lsw zna put

2l

. - - . ¥
=K, A= g , B=pF, ;=5 » Cx= 7% 05=¢3 (4.3)

P ey -
Where K is the momentum, v is velocity, F 1is the mass forge
—y - R .
N, B, T, . are tr:e momentum flows across a surface perpendiculur to the
axes or what ls the seme, the pressure of the surface forces.

Putting {4.3) into (5.14) we obtain

(Pv) + PV div ¥ 1 [3 (a4 3 6 H) a(\m(f)fl)
&__DV +deiVV:pF+ 712'3 25 + 3 o
dt HiHoHg & g = |
or
o &%/ agr pdiv ¥ = pRF__1 [ D (ThHH)+ D (ThHH) )+ (1 1H2) (4.5)
dt \at J B Hy HsLaql dd,, 34y 2
Replacing the brackets iu the left side of (4.5) with the aid of (4.%)
ve obtain

p Q¥ + 3 (QHpHz) + 3 (QeHgHy) + O (QafyHp) | =
it H H‘H o y Nz g

1
F+ _1 [a( Hotl,) + a(-?Hh)+ d (ToH i H)V (4.6)
HyHolz {39 ! qu S‘;; 31 ;

or
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o &V + ¥ [d (qRH) + 3 (G H) + 2 (QHH)] =
R R L sty

Gl %+ 1%l Oy Ty 3 (Hgiy +
Hy da; Hpddp BHgoay HyHpHg o9y

T D (lighy) + T _d (H.H,) (4.7)
B Ao, 3Gp T, 51, L C
1y 0dp oz 345
In pructice, ejuation (4.7) is not used in its vector form, but
in projections on tue curvilinear coordinate axes. Conseuuently, it is

nocessary ©o project tine vectors
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vation on the curwilinear coordinate axes.

The Torimilas for the projection of the acceleration Ev/ﬁ" are kaovms
> v

e o AV Ovy | Vi Ovi | Va OV vy dvy | viviey O
i = S m == o e -3 + :
* .at /i ot 5, oq Ha 502 To Hit do

R " - R * 3 43 141 “iar

Vitita OB Vi 2003, Vi+223Hi+9

LHite %42

(1 =1,2,3 (4.5
T:Hi41 Oqj HiHj4+2 Oqg : +253) )

wazre Vi = vi+3

is the projection of thie velocit:r on the curvilinear
axes and Hy = I i+a °re Lané coeffinrients

coordinate

Do ovtain forrrilas for the projections of the derivatives of the
vestors 3,3 and 7
hdhdal T]_, T, ano T

vithout difficulty., 2ub

[&]

with respect to the coordinates is also represente:

>
i r 133 '
"'k '1)3 ()7 2> ,
:-—li = Ty /iy 4 Bk_z\a)lg + 394, {x=1,2,3; 1 ) (B
(9la]

> >

-<~‘
vaere ii, 1., and i; are orthogonal cuwrvilinear coordinates and the }31\__3(““'
are coefficients vhich are found later.

>
Talting into account (4,¢), then for the derivative of any vector

a -rith
svect toc the coordinates q1
3
La_ 7 /_\...& + alBlz(J) + aeBaz(j) + 24Bg (J/\‘i (1.10)
) L ’O(QZ /
o=1

vhere 23, ag, dg, 2re the vector projections on the curvilinear axes.

Using formidas (%.7) and (1,10} from the equation

‘4,7) of the vector
the follewing three scalar equations are obhtained:

<
- Va OVY Vg OV
o _,4-‘4,_:.’:._.._1.& +__2.___|l+_§_

Lq_v:v:,_kl E?Hj + VIViyo 5H4 -
L3t M3 3,  Mp o0z Ha dgy Hifapy CGiyy Hilyyp Niyn
”
Vg2 BHJH _ Va42® oH sv2 .
HjHj+15qé N I o,

(%)



[ (@) + s (Qag) + - 1.
HyH 1 L3q, (QuHoHg) + aqa (QoHgHy) + 5 o (QaH1H2) |-
P, B 2l
ik H HH, g, (Fefls) + HH-Hs 5 (B) + H1H2H3 S, (k) +
a ) > > AY

i, '\—B—C-‘-j-‘”nBu(J) +7182,(9) +Tlale('j)) +
_lE_%i NG OR 2 L) +
Ho N 3dq,
1 /a? i > > (3) ‘
= asJ +Tgq Bla(j) B (J) +1—33 Bas dJ (3 = 1’2’3) (ll-.ll)
Hy™ oaq

Let us find the expression for the coefficients By (m). From (%.9)

3, > '
B, (™) = o | i (4.12)
>>>
If 1,j,k, are orthogonal Cartesian coordinate axes and if the connection

between the Cartesian and curvilinear coordinates is given by the formulas

x=x(ay, 9 95); v =yle, a9, q); oz =2(q, 4, q) (4.13)

Then evidently

> 1/Bx.> dy > dz »
lk" 1+S—-—J+§‘"—k
Hy \aqk Ak ak

Yol w3y, % 3
Hy \oapn Oy

5i£ _ ___‘/ 1 9dx 7, <;l Bz‘>
dq; da; “Hg dgy 5q \’Ik aqx)j aq dqy

Therefore

(4.1k)
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m) . 1 [3x 3 /1 dy 3/ 1 3 L2 3 (1 3:Y
Bk‘t()"" + .__.._X.

L . 4,15)
dapy Bql \Hp dgy dqy 0gq; \Hy Ogk qu dq, \\Hk Bq;) (

Equation (4.11) with the presence of (L4.15) are the required eguations

describing in differential form the momentum law.

Let us derive the energy equation: For this use the energy conserva-

tion law, Put

> >
o = U*; A= % ove + pE; B=pF.v+¢ (L.16)
> > > > > >
Co =TV + ty; Ca = Ta2.v + tp; Cay = Tg.Vv + tga
> >
where U¥ is the total energy, E is the internal energy of a unit mass, pF.v

> > > > >
is the force developed by the volume force T;.v, TEJV,.?B.V is the force

developed by the surface force produced on the unit element of area perpendi-
cular to the coordinate axes, ¢ is the volume velocity excluding chemical

light etc. energy, t,, t,, t; 1s the heat flow across an area perpendicular

tC the axes.

Putting (4.16) in (3.14),

dt[ ("2+EJ + Y2—2+E> div T = oF.¥ 4 +
1 3 2 > 2~ d > > ]
— (7,8 JEEH) + — (T ¥ H) |
R [aql () VHHS) + 3, (T VB H) + da, (75VH, 2)J *
= f (t,HHZ) + D (t HH,) 5= (taHlHe)-} (4.17)
H,HH, L3q, 32

er

> >
p——-+<E+ >(_R+pdiv?>+pv.——-—pF v+ ¢  +
at

W)

>
v

HyH Hg

La (TleHa) + (TIH oHy) + g—- (TsHlHa):‘ (4.18)
2
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Ty 5‘3 T, 3.3 Ta > 1 ‘:5 (t,5.5,) (t 5) (t
e~ — g = + + = + 5
Hydq, H 3, H dq, HHH,Ldq E S 2)]

‘ S
Using equations (4.2) and (4.6) for the scalar multiplication by v,
it is possible to produce evident simplification in the preceding equation.

Then there is obtained

v2\ d d o 1.
° 5 +(E - %) mAm [571? Qg + 5oz (Qaah) + 50 Qa8 =
+ 11_ é_-z_ + T.ﬁ,i. s—a-Y— +

Hy 0q; Hp 9, Hy dqg

3 d |
S0 (t B H,) + Sa; (taHIHE):] (4.19)

1 {a(
— (t,H_H,) +
B,HHy 9q, = * 29

This is the desired energy equation., With its writing in expanded
form, have in view that the product of the vector velocity by the coordinates
st be calculated with the help of (4.10).

In Cartesian coordinates x, y and z when H,=H=H =1 and By, (w)= o,
a1l the separate equaticns are essentially simplified a.z;d the following

simple equations are obtained from (L4.2), (4.11) and (4.18):

By . B, N, Ny
5-9.+péh.vv s ay+az
dvy /3y . Ny an> N Oy B'rxy BT&
e X\ ox Oy oz PR Pt oy | oz
(4.20)
v /BQ,Jc _8_912 oQ oT oT oT
kA [ X —Z ). X 24 JZ
e +VV\ax+dy+dz> oy * 3 Y Sy T e
a /0 o o 0 ) )
\ Ox oy oz X oy oz
dE 5Qz)
p — E - Rz
= T2
atx ty Jt, » XN » F » &
€+ax+ ay+ 3. +TX'_5—_+T}"5§ +7, * 5o
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>
The quantities Q;, 7 and t, which enter in the obtained equations

are defined in the next paragraph.
5. Expressions for Mass Flow, Momentum and Heat.

With the definitions of the mass flow® Qs , Momentum 74, and heat t3
across an area moving with the velocity -gh of the gas perpendicular to
the q4 axes, there will be considered that these quantities must be
linear functions of the first derivatives of the hydrodynamic elements
with respect to the Cartesian coordinates,® The coefficients of these

linear functions must only depend on these hydrodynamic elements.,

tro simplify the explanation there is omitted the specification that the
flow across a moving area is being discussed,

“This assumption may be applied, arising from numerous experiments dedicated
to the study of different types of particular cases of transfer phenomena
of mass, momentum and heat energy in gases., The results of these experi-
me.ts showed that, observing certain conditions, the flow of these quan=~
tilics actually appear linear functions of the first derivatives of the
hylrodynamic elements vy, Vys Vg, p and T with respect to the Cartesian
coordinates x, y, 2.

It is clear that applying this assumption we narrow somewhat the class of
gaseous motion vhich is easily studied with the aid of the obtained
equations. ‘ '

Actually, for this assumption to be correct, for example, it is necessary
that the Lydrodynamic elements be sufficiently accurately assumed linear
approximations of a distance of the order of the mean free path of a
molecule not defined by assigning 1ts hydrodynamic elements and their
first derivetives in some point of the volume, Not having data on the
gas state in the volume, we formulate the flow, it would be impossible
even to set the problem of finding expressions for the flows by the
hydrodynamic elements and their first derivatives., However, in spite
of some narrowing of the class of accessible by such considerations
motions of a gas, tests and kinetic theory of gases say that.the -
above -formulated basic assumption will with sufficient accuracy be ful-
filled in a very broad class of gas motions which are of practical
interest, or for this assumption to be correet it is sufficient the
basic assumptions which are formulated in the present work, N

Here the expression for the original flow is defined in Cartesian coordi-
nates and then in general curvilinear orthogonal coordinates.
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Evidently they may not depend on the projections Vs vy, and v, and the
_>

velocity v. Consequently they must be functions only of the density and

temperature.l

Let us consider the desired linear forms for Qx, Qy, and Q,.
sterting with Qy, put

Q = Ay + 3,4 gﬁ + 8oy gﬁ + agy %E +
blx§+bac§§+b3x-§-f +
clxa-é‘ff+c2xa—a‘-’;$+c3x%‘-’-z& + (5..1)
dlx?f+dm%v};y-+dsx%v-zz +
C1x %;E + eny %%f + eayx i:

“widently with the variation of the direction of the x~axis in the
opru=iite, Qy must change in sign., Consequently in the right side of
formula (5.1) there must be neither terms nor variastions of sign with
the variation of the x-axis to the opprosite, Hence

Ax = Bzx = 8ax = Doy = oy = Cax = dox = gy = ey = egy =0 (5.2)

Further, Qu must not depend on the directions of the y and z axes.

Conseguently
Cox = Cgx = d1x =€y =0 (5.3)
Therefore .
Bp oT ‘
= a _+b - 5."!
! X dx X dx (5.4)

lBeing discussed are flows across areas moving with the gas. The relative
velocity of the gas with respect to the area is always zero. Consequently
the values of v, Vys and v, are not reflected on the flows.
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Since the x, y and z axes are completely equal then

%1x = 2oy =85, =Dy; b =D, =D, =D, (5.5)
Similarly

dp dT dp T - dT '
QX=D18‘£+D2§;, Qy'-'—'Dl—a—};-'F D2 S;, Qz—Dl‘é—z"l" D2 'é‘z': (5-6)

The coefficient D, is called the coefficient of self-diffusion of
density, and D, is called the coefficient of self-diffusion of temperature.
For linear forms having the heat flow t,, ty, t, repeating that only

the statement of the considerations lead to

P - - MR O NN - SO )
by = Ky ¥ Ky 3 ty =Ky Sy + K, S =K 5 K5, (5.7)

witre 7y is the coefficient of hent conduetion oy dersity and Iy is the
coefliclent of heat conduction Hr terperature, The coefficients Dy a ' Da
. Ty ond Ky ore encountered in tha kinetie theor:r o7 gases.

-

Sinally, let us estahlish for Cartesian coordinates +he aspect of

R . . . : > 2 2
lire-r Torm giving the projections of the vectors Txs Ty 208 T,, On tae

\

s gy PRI e h : LR . .
Turni:. to equation {3.1%) we write it in Cartesian coordinatas

aprlicable to the momentum law. Put

= x5y oy s >

© =1, A=TXxopv, 3B=r1XpF

> > > > > > > > > (3.9

V1 T T A Ty, Op =T X Try  Tg =TT,

> >
Tiere L is the monentwn, r is tiae radius-vechor of - roint of the
s , .

woins medivm, ?;; pf 1s the uass force avplied to wait volume,‘?’x<?%,
> > » >
TN Ty, T'X T, are the momentun flow across a moving area perpendicular

to the axes.
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Substituting (5.8) in (3.1k)

i > > > > > 2y > > d
—_ X p¥) + {(rXpv) divv=rXpoF + = (X ™) + — +
L Fx o+ (Tx o) oF + 2 (Fx ) + = (FxTy) + & Fx 7
(5.9)
or
> oT oT oT, 7
rx[.d_(p%+p%div%-pF--—-’5— -2 1,
at dx Oy z |
> > > :
ir > ¥ 3 X2 3 2
— X pV + X T A+ T 4= X 7T, =0 5410
& P TRy VG 2 (5.10)
Here the square bracket, or the basis of (L.4), is zero.
Moreover,
S tadeo, B.1 X3 B2 |
— X pv =V Xpv =0, = =1 = — = 11
PRy P » 3 1, Sy Js 3 K (5.11)
Therefore
> » » > > '
ix'%x+.jx¢y+kx72=o (5.12)

This vector equality is equivalent to three scalar equalities

'Txy. = ‘Tyx’ Tyz = sz, TZX = sz

representing the well~known three-dimensional property of the syrmetric
pressure “ensor on a continuous medium with self-diffusion.

Keeping this in mind and corresponding to the general considerations,

we obtain
Tix = Ajx + a’i'k.( 12 + aili( 2) Q0. + aix (3)_§_9_ +
ox ‘ dy
oT oT oT
iz:(l)'é; + bm(e)—g; + by (3)—52—
l._( l)aavx + 0111(2)%’1 + c:l'lk(s) a"'Y'Z‘ + :
x Y 9z (5.13
PIRCOVLe - G ) , Ve ) (Y ¥z , vy, ,
13y Ox : ay e . Ox Bz//

€ 4i4 . —~& X
1% ay + e4 k z elk( ax az
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The quantities Aik; as the other coefficients in (5.13), do not
depend on the values of the derivatives of the hydrodynamic elements
with respect to the coordinates. They may be found by those values which

they assume in a gas with constant hydrodynamic elements
Ay=-p, A =0, i#k (5.14)
where p 1is the pressure in a gas with constant hydrodynamic elements
which, for an ideal gas, is determined by Klappenrod's equation
= RpT (5.15)
Moreover, since the values of 7y do not vary with variation of
axial directlon and back, and the derivatives of p and T with respect

to the coordinates for this same transformation change sign conversely,

then
aik (1) = alK(E) = aik(S) = bix(l) = bix(2) = bik(a) =0 (5.16)
;‘e.?tainly; according to (5..12) it is evident that

ej_‘k(l)'—' ei_k(g) = eik.(s) =0 (5.17)
Consecently the _?ik (components of the pressure teusor) inflvence

by linear -vactions only the components of the deformation velocisy

tensor. As is known [5], for this the following equalities are sufficient

> . ov, Ov
Toe = =P + 3 div v + 20 —= Ter = B[ =2 4 L
x> 1 o’ *y Jy ox
> dv dvy Ov :
o= =D by div 4 on O, T - <__1 ..:e>
vy ! . dy vz = R\, Y (5.18)
> dv, NE®
Togo = =P 4+, divv + 2y 2 Ty =
“e ' 3z = \Bx )

“There Hy and u are certain functions, generally speaking, of the density

p and the temperature T. The quantity u, as is known, is called the



- 17 -

coefficient of viscosity and the quantity p; - the coefficient of
second viscosity.

>
T

If, in the reasoning these tensors are introduced: pressure T,

> >
deformation velocity II and unity I, then all the preceding equalities

ynite into one:

> > > '
T= (-p+y, divy) T+ 2uil (5.19)

which is always convenient for transformation to any orthogonal curvi-

linear coordinates. Transforming (5.6) and (5.7) to curvilinear
orthogonal coordinates we obtain
1 Jp 1 oT 1 o 1 oT

Q; =Dy =~ == +D, — = t;: =K —c—+K, —=—  (5.20)
1T UM H;dqy 2Hyogys Y PHjoqy  ®Hj gy

Moreover, transforming (5.19) to curvilinear coordinates executing

the usual calculations [5], we obtain the last of the desired formulas:

Tie = = 1 -_é_ KR s} 1
ii P+ ulHleﬂa [aql (viH-H) + San (voHgH,) + 5&; (V3H1H2)J +

o[ 121 Viga OB Ve Oy }

1 9ay  HyHiy; Oq34;  HyHy,o 0q44o B

(5.21)
Ty = H{_—%- .a.v.i + 1 ovk _ vy OHj A BHk]l
LHK Bq;; Hy aqi Hin aqk HyHy aqi 3

The expressions obtalned for mass flow, momentum and heat contain

six coefficients:s Dj, Dy, Ki, Koy Uiy He

6. Expressions for the coefficients u,, Dy, D,, K;, K.

To establish expressions for the coefficients u,, D, D,, K; and K,
dimensional theory is used.
If ¢, the coefficient of specific heat for constant volume is

introduced into the reasoning, expressed in mechanical not heat units,
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then there will be the following relation between the dimensions:

| o | . |
[y 1=[u1, [DI]{%}, D, = [&ﬂ [Kll{“‘:’ J Ka J=lucy ] (6.1)

Consequently, we may put

uey T
P

Hy = ap, Dy = % 01, Dp= % gz Ky = Bys Ko = peyBs (6.2)

where  a, @, Op, B; and By, are dimensionless functions of dimensionless
parameters defining the state of the gas at equilibrium because the formulas
for the flows with these same coefficients prove applicable for the whole

considered gas states‘including those which are as close as one pleases to
the equilibrium state,

The equilibrium state of the given ideal gas is completely defined by
giving its density p and 1its temperature T, Out of these qualities it
is impossible to establish one dimensionless combination. Consequently,
for an 1deal gas the quantities a, a, o, B, and B, will be consﬁants
depending on the type of gas and consequently, the coefficients u,, D,,
Dg, K; and K, may be considered known with the accuracy of the constants
a, 03, Gs, B; and B, if the coefficient of viscosity p 1is known or the

is constant for an

coefficient of specific heat for constant volume c,

ideal gas,
7. The Coefficients a, a;, oy, B, and B_.

Kinetic theory of gases permits the expectation that the numerical
coefficients a, a;, a,, B, and B, will be quantities of the order of
unity., Generally speaking, these quantities must be found in a corre-
sponding way from the set-up tests,

In the present work we do not dispose of all these coefficients

by test values but nonetheless relying on some test results and on
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considerations of kinetic theory of gases we give the numerical walue of
these coefficients of a monatomic gas.
First of all from kinetic gas theory it is well known that for all

monatomic gases [6]

a = = % (7.'1)

Moreover, from tests on self-diffusion of gases [7] it has been
established that for all monatomic gases the coefficient (to the limits
of test accuracy) is the same

oy = 1,30 (7.2)
which is close enough to the theoretical value of this coefficient
obtained for different molecular model. Having «,, it is not difficult
to establish at once the value of Bye

By the same sense of the coefficient D; it may be confirmed that
for constant temperature T and variable density p across an element
of area dS with normal -i and time dt Dbecause of the density of

self-diffusion the mass transport will be Am, yielding the formula

s =D, % as at (7.3)
on

This mass possesses the heat energy Ag, where
op '
Aq = AmeyT = ¢yDy 5~ dS at (T.4)

This heat energy is the heat energy passed across our area in time dt
as a consequence of the density of heat conduction. Therefore,

S |
M =Ky 50 as dt (7.5)

Equating (7.,%) and (7.5), we obtain o,= By, Therefore for

monatomic gases

B, = 1.30 (7.6)
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Moreover turning to the establishment of heat transfer across a
plane gas layer enclosed between two walls in a distance A7 for differ=-
ence in wall temperatures AT. If heat flow be denoted by q, then
from experimental data it is easy to find the value of f determined by

the formula

d

T e (7.7)
ey AT/AL

f

The average test value of this quantity for a monatomic gas [8]
equals 2,51, On the other hand, it will be proved below (Sections 9, 10)
that

f=p, -8 (7.8)

1

Therefore, for monatomic gases
B, = 3.81 (7.9)
Let us now find a,.
Let us consider the heat transfer in a still gas of constant
density and variable temperature, We denote by Aq the amount of
heat energy passing across an element of area dS with normal 4%
in the time dt. Evidently
oT '
Aq = Kp 57 dS at (7.10)
The quantity Aq consists of two components: Ag; and Ag..
The first component, Aq,, represents the heat energy flowing
across an element of area taking into account only the variation of
temperature, neglecting the heat of self-diffusion.

This quantity may be calculated by means of the theoretical formula
dT '
AQy = T*p oy 5 das at (7.11)
n

As a basis for certain applications of this formula to monatomic gases

this circumstance serves: that for different molecular models of
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nonatomic gases there is always obtained for the numerical coefficient
* an approximate value [9]. Namely, for all models of monatomic mole— )
cules considered theoretically, f* is included between the limits 2,50-2.52,

Consequently we usge

Ag, = 2.5l cvgg as dt {(7.12)

The second component Ag, represents the amount of heat energy trans-
ported by the heat of self-diffusion of mass flow., If Am denotes the

mass penetrating an element of area as a consequence of the heat of

self'-diffusion, then
or

Am = Dy = dS dt (7.13)
This mass possesses the heat energy Ad,, where
AQ, = AmcyT = cyTD, %'3 as dt (7.14)
n

Equating the two expressions obtained for Aq

ap = By - £* (7-15)

Therefore,

5= 1,30 (7.16)

Corresponding to the preliminary expectations, alllthe coefficients
Uy, %p, By, B, and a are terms of the order of unity.

Remarks: The relative magnitude of the different terms in the
equations of motion under different conditions will be different. It
is possible to specify such conditions of gas motion when the funda-
mental values will have self-diffusion terms; it is possible to specify

.

such conditions of motion when the fundamental value has only terms

related to the pressure tensor, etc. Consequently, it is impossible

to speak of the relative magnitude of different terms in the motion

equations not isolated from a definite class of motions.
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FProm the practical point of view an important class of moﬁions
is that motion when all the hydrodynamic elements (velocity v, density o
and temperature T) vary from magnitude to magnitude by the order of their
distance from the order of the same length,

To such motions belongs, for example, motion in the boundary layer
at high speeds, In these motions at points separated by a distapce of
the order of the boundary-layer thickness &, generally speaking, the
hydrodynamic elements differ by the magnitude of the order of these
same hydrodynamic elements,

If that motion with one characteristic distance for all hydrodynamlc
elements is kept in mind then the standard transformation to dimension-
less quantities leads at once to the conclusion that, in these motions,
all self-diffusion, heat conduction and viscosity terms have the same
relative magnitude if only the constants a, o, a., B;, and B, have one
order.

Since, according to kinetic gas theory, all these constants are of
the order of unity, then it follows that for the motion considered if
only one term related to transport phenomena is retained in the equations,
then all the other terms related to these phenomena must be retained.

Moreover, this means that for the motion of the considered class
elther completely exclusive equations or the equations of motion of an
ideal compressible fluid may be used,

8. Boundary Conditions for the System of Differential Equations
of Gas Motion

To integrate the system of differential equations of gas motion

which is obtained, boundary conditions are necessary which occur on the
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surfaces of rigid bodies of gas streamlines and boundary conditions at
infinity in that case, when the domain occupied by the gas extends to
infinity.t

The question of the boundary conditions at infinity are always
casily solved. Evidently these conditions must include the density,
temperature, and velocity components assigned at infinity,

The question of the boundary conditions on the surface of a stream-
lined rigid body is more complex to solve.

First of all, it is completely clear that through the surface of a
streamlined rigid body the mass of gas does not penetrate,

If the normal to the surface S of a rigid body be denoted by i
and it is assumed that the body streamlines do not move in space then

this physical fact, evidently, is described in the following way:

\ v
%, )
(Dl 3 + Do Bn/g (pvnl)s (8.1)

In order to obtain the boundary conditions on the surface of the
streamlined rigid body, we assume that immediately on the surface the

gas moves either very slowly or at rest,2

lSince the order of the obtained system at unity is higher than the order
of that system which occurs for incomplete consideration of transfer
phenomena, then the old boundary conditions do not correspond to the
setup of the problem if only because its number doesn't correspond to
the new order of the system of the motion equations,

21t is possible to reduce certain physical occurrences on the basis of
this assumption, Visually the smooth streamlined surface may be
assumed for a gas of micro-motion close to the surface, the gas will
be found in the conditions, as close to the streaming conditions across
a very slightly porous medium,

Well-known are the enormous coefficients of the resistance of gas motion
acrogss different kinds of slightly latticed and porous media and also
known the extremely inconsiderable input of a gas for motion through
a latticed and porous medium which for sufficient smallness of pores
is practically zero.
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Neglecting small velocities of the gas motion directed tangent to
' > >
the surface S, and denoting by Zl, and 12 the vectors tangent to the

surface S, we obtain two boundary conditions

Gh)s "0 (vlz>s - ° (©-8)

AN

In the gas at rest we have a static pressure distribution. Conse-

gqucntly, with the known approximation, it is possible to assume

(%) . 8
\an)S = (pFn)g (8.3)
vhere Ty 1is the projection of the mass force on the normal to the
surface.
The boundary condition (8.2) is confirmed well enough by experiment.
Boundary condition ( 8.3) must be verified by tests and at present may

be considered as a probable hypothesis,

Q, IExample of the Integration of the System of Equations of
Gas Motion

Iet us consider the uniform simple problem of heat transfer through
a gas layer between two parallel planes for the conditions that the
difference in the temperature of the walls is small and there is no
mass force,

Let the two parallel planes be X =-1 and x = +l. Let the tempera-
ture of these planes equal, respectively, Tl and T2. Let the gas between
the planes be in such a quantity that it would have density p, 1f it
were constant throughout the space occupied by the gas. Finally, let
the gquantity

x_To =Ty

€ (9.1)

Ty + Ty

be so small that its squares may be neglected in comparison to one.
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The considered problem corresponds to the following transformation
of the system of cquations of gas motion:
a d dp dT ™\
a oz _4f b oav )
— 12 = =1 « RpT + -
o (V) =l - Be I &/

N (9.2)
ar , / v 4 _af. ap ar
pCy v a;(‘ + \ eyT — —é—> E-}—C (QV') * \\Kl = + Ko d.}(/ +

/ L av \ dv
i - RpT + — - =
\\ 0 3 de/dx

For simplicity, the gas is considered monatomic here; this does not
affect the generality. To determine the constants of integration, we

have the following conditions:

d | a '
pv = Dy a§-+ Do %%, T=T,, T a% +p §£'= 0 for x=+1 (9.3)
ov=0 240, ¥, ey, 1R, T rorx= -1 (9.4)
dx dx ax ax
+1
_Lf ix =
21 zp - Po (9.5)

At first glance it may appear that we have seven conditions to
define six constants of integration.

However, consideration of the first of equations (9.2) shows at
once tﬁat the first of conditions (9.3) and (9,4) are not independent
and follow from each other by virtue of this differential equation.

Because the quantity e* is assumed small, essentially (9.2) and

conditions (9.3) and (9.5) are linearized, Put
p=p, +0's T=]§(T2!-T2)+T'=TO+T', v o=y (9.6)

Dy = 030 4 pyr, K5 = k00 Lggr, - Ho + !

where the primed quantities are small.
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Then to determine p', v' and T' we obtain the following system

of equations:
' d2p! asm
dv'_ p, (o) 9% | () 1

Po ax ox dx
b a3y / ap! 4T \ ‘
= ~RIT, == ¢ =
241 ' '
o) d aér av
x, (©) 5;27 + Ko(0) 5= %0 To 5
R = cp - CV (9'8)
Moreover, we also have the following system
. o) dp! aT!
Do"’ _Dl( ) dx-—-—+D2(o) i for x = +1
Tp-Ty dp" ar
T = __.._._.22 » Togx—+poﬁ—=0 for x = +1
T,=T, dp? dT* '
t = . _.2____1_ ——— — = -
T 5 T, 5% + 0 = 0O for x 1 (9.9)

1
fp'dx=0

-1
Integrating the first and third of equations (9.7) and taking into-

account the first of conditions (9,9) we obtain

Dl(o) g_%.'. + D2(0) dd_i_'. = pov'
(0) do! (o) ¢T° _
Ky x K2 dx CpPoTov! + Auge, T, (9.10)

vhere Ausey T, 1is the constant of integration., Because, by virtue of

(6.2),
' T
Dl(o) = Ho a1, Kl(o) = U-ocvﬁl—o
po Po .
(9.11)
Dg(o) = EQ' Aoy Kz(O) = pocvBso
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Then solving (9.10) for dp'/dx and 4T'/dx, we obtain
' Pof c o
— l\(ﬁa—lazw_g'v'_azA::

Cy </ Ho

where - Bll\ (9.12)

Putting (9.12) into the second of equations (9.7),

vgggéi ~v' = - (9.13)
In this equation
2
V2 = B—_ ~ A Ko
3 (CP/CV) (0*2"(11) - (Bg"'Bl) pOpO
0,2 - (Il U'O
u = —
(Cp/cv) (a'g’a'l) - (BE'B]_) Po
where (po = RA. Tp) (9.14)

Equation (9.13) is easily integrated., After integration we obtain
vl = ud + Blex/v+ Bga"x/v (9.15)

where Bl and B‘2 are integration constants,

With the aid of (9.15) it is easy to find p' and T* from (9.12).

Making the calculations, we obtain

= » poA X +
P (Cp/cv)(ae'al) - (82”51)
N\
%(Be - % ag/rvg—g— (Blex/V—Bge'x/v) +Cy _
T_A ' (9.16)
- T
Tt = X -

(cp/ey)(a-aq) = (Bp-fy

———(pl- - onl\\’ (B»lex/v -Bze"x/‘V) + Cy

C
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where C, and C, are integration constants.
The constants of integration are *A, B;, By, C,, C, are
determined from the remaining unused conditions, thus

To-T; 1 To-T ' T,-T, /x\ '
vt = —=—— — (az-a;), p'= = Tl Po ! E\;'T' 22 1\'i/ (9.17)
21 poTo T4T, 1/ A

-—

From these formulas it is not difficult to find now the heat
flow tyx across any element of area perpendicular to the x axis,
Applying the linearized formula (5.7) and using the formulas (6.2)
we obtain

- Ty

T2
ty = P-ocv( BE‘B]_)"—E—_

- (9.18)

From formulas (9.17) and (9.18) certain conclusions may be made.

First, if the value v' can be found from experiment, then from
the first of the formulas (9.17) we have a method of determining
(cp-cty) -

Second, from formula (9.18) there immediately results that the
variation of heat flow t, permits the determination of (Bg-Bl).

Finally, third, from formulas (6.23) there results that all
experimental work devoted to finding the quantity B, by means of the

formila

21t '
Bp = T (9.19)
(To~T1)pocy

which is used only in experimental work, simultaneously yielded the

value of (B.-B,).
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10, Second Example of -Integration of the System of
Equaticns of Gas Motion

Let us now consider the uniform problem of the sieady heat
transfer across a gas layer between two parallel planes with the ccn-
1ioiors that there is no mass force, but the temperature difference
2> the walles ig not small:

in conformance with the kinetic theory of gases, we will consider
that the viscosity p  depends only on the temperature and is a known
fvrnction of the temperature. In this case we must again Integrate
the system (9.2) with the conditions (9.3) - (9.%£) to determine the
integration constants.

On *the basis of the Tirst of formulas (9.17) which gives the
order of the gas velocity v in the case considered, it is possible
to confirm that in a very broad class c¢f cases the velocity will be
a small quantity and with large jump of temverature,

Using *his in the second and third of equations (9.2), we neglect

terms having oider 12 and 2. Ten the system 9,2) becomes
r [}

a ., a /., do AT '
—— T = — Y)w e o= Dr —_— lo . l
djc(pfl dx \ Tdx “ax/ ( )
= (RpT) = 0
ax

\

d i — d—l d.l.\
CV -d—x- (qu_) = &-\Kldx‘l'Kz ¢/—R T-—

The first of equations (10.1) immediately integrates and a-ver
sztisfaction of the Tirst boundary condition in (903), and therefore
the first boundary condition (9.4) yields

dp ar
v =D 4 p, &2 (10.2)
P tax ® ax
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The second of equations (10.1) also integrates and yields

oRT = C1 (10.3)
where Cip 1is an integpation constant,
The integral (10.3) guarantees fulfillment of the third condition
of (9.3) and the third condition of (9.h4).
Moreover if (10.3) is taken into account then the third of

equations (10.1) integrates and yields

ey pvT = Kl%% + Ké%% -Cyv =Cy (10.4)
where C, is an integration constant.,

Put the velocity v from (10.2) into (10.4), Expression (6.2)
for the coefficients Dp, Do, K; and K, 1s used and substituted in

(10.%) and, finally, with the aid of (10.3) the density p is

eliminated from (10.4). Then we obtain the very simple equation

dr _ C2 (10. 5)
W& T S (Bh) - cplazay)

Integrating this equation and satisfylng the second of the

boundary conditions (9.3) and (9.4) we obtain

hal Te —l--l T T2 '
’. m ! ,r F X
] n( )dT; ] uw(T)ar -j u(TYaT = 7 (10.6)
T, Ty T

The right side of (10.6) is a known function of temperature and
consequently, from (10,6), it is possible to find the temperature
distribution independent of x.

Using (10.3), condition (9.5) and transforming from the integration
variable x to the new variable T with the aid of (10.5), we find Cy

and obtain a formula for the density



T2 {_ Ta =L .
p = %O-f u(T)dTLJF%p(T)dTJ (10.7)
: T, T

Mcreover, substituting the expression for T and p in (10.2),

using (10,5) and the expression for C,, we find v, Thus

To .
v = 22rd f JT_‘p.(T)dT (10,8)

21p
. 0 . . l .
Fermulas (10.6), (10.7), and (10.8) solve the problem posed.
Finally, without difficulty, it is possible to obtain an expres-

sion for the heat flow t,. As the velocity, it is a constant and

given by the formula:
T

ty = cv(ea-ﬁl)-e%- [u(T)dT (10.9)
1

Let us make some observations on the formulas obtained,

First of all, let us note the circumstance that we may not find
the different quantities ay, Gn, Py, and B, from these formulas but
only their difference, Further, let us remark that formulas (10,6)
and (10.7) permit us to find easily the dependence of viscosity on

tenperature with the aid of the: measured density or temperature.
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